首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2376篇
  免费   116篇
  国内免费   402篇
安全科学   57篇
废物处理   30篇
环保管理   361篇
综合类   947篇
基础理论   420篇
污染及防治   635篇
评价与监测   321篇
社会与环境   104篇
灾害及防治   19篇
  2024年   3篇
  2023年   26篇
  2022年   33篇
  2021年   48篇
  2020年   70篇
  2019年   56篇
  2018年   63篇
  2017年   58篇
  2016年   85篇
  2015年   92篇
  2014年   96篇
  2013年   203篇
  2012年   139篇
  2011年   263篇
  2010年   159篇
  2009年   237篇
  2008年   215篇
  2007年   194篇
  2006年   131篇
  2005年   86篇
  2004年   79篇
  2003年   81篇
  2002年   64篇
  2001年   48篇
  2000年   61篇
  1999年   38篇
  1998年   29篇
  1997年   32篇
  1996年   31篇
  1995年   26篇
  1994年   25篇
  1993年   36篇
  1992年   23篇
  1991年   5篇
  1990年   10篇
  1989年   9篇
  1988年   7篇
  1987年   6篇
  1986年   6篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   6篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有2894条查询结果,搜索用时 31 毫秒
81.
The impact of emissions from the Siberian Chemical Plant (Tomsk oblast) on reproduction and embryonic development of the fieldfare was studied. Bird abundance, clutch size, and egg volume in the impact and background (control) zones were similar, but partial brood mortality in the impact zone proved to be significantly higher, and the frequency of embryonic pathologies (including developmental abnormalities) was also several times higher than in the control.  相似文献   
82.
Recreational uses of unsurfaced trails inevitably result in their degradation, with the type and extent of resource impact influenced by factors such as soil texture, topography, climate, trail design and maintenance, and type and amount of use. Of particular concern, the loss of soil through erosion is generally considered a significant and irreversible form of trail impact. This research investigated the influence of several use-related, environmental, and managerial factors on soil loss on recreational trails and roads at Big South Fork National River and Recreation Area, a unit of the U.S. National Park Service. Regression modeling revealed that trail position, trail slope alignment angle, grade, water drainage, and type of use are significant determinants of soil loss. The introduction of individual and groups of variables into a series of regression models provides improved understanding and insights regarding the relative influence of these variables, informing the selection of more effective trail management actions. Study results suggest that trail erosion can be minimized by avoiding “fall-line” alignments, steep grades, and valley-bottom alignments near streams, installing and maintaining adequate densities of tread drainage features, applying gravel to harden treads, and reducing horse and all-terrain vehicle use or restricting them to more resistant routes.  相似文献   
83.
Acid sulfate soils have been described as the “nastiest soils on earth” because of their strong acidity, increased mobility of potentially toxic elements and limited bioavailability of nutrients. They only cover a small area of the world's total problem soils, but often have significant adverse effects on agriculture, aquaculture and the environment on a local scale. Their location often coincides with high population density areas along the coasts of many developing countries. As a result, their negative impacts on ecosystems can have serious implications to those least equipped for coping with the low crop yields and reduced water quality that can result from acid sulfate soil disturbance. The Millennium Ecosystem Assessment called on by the United Nations in 2000 emphasised the importance of ecosystems for human health and well-being. These include the service they provide as sources of food and water, through the control of pollution and disease, as well as for the cultural services ecosystems provide. While the problems related to agriculture, aquaculture and the environment have been the focus of many acid sulfate soil management efforts, the connection to human health has largely been ignored. This paper presents the potential health issues of acid sulfate soils, in relation to the ecosystem services identified in the Millennium Ecosystem Assessment. It is recognised that significant implications on food security and livelihood can result, as well as on community cohesiveness and the spread of vector-borne disease. However, the connection between these outcomes and acid sulfate soils is often not obvious and it is therefore argued that the impact of such soils on human well-being needs to be recognised in order to raise awareness among the public and decision makers, to in turn facilitate proper management and avoid potential human ill-health.  相似文献   
84.
New best estimates for the solid–liquid distribution coefficient (Kd) for a set of radionuclides are proposed, based on a selective data search and subsequent calculation of geometric means. The Kd best estimates are calculated for soils grouped according to the texture and organic matter content. For a limited number of radionuclides this is extended to consider soil cofactors affecting soil–radionuclide interaction, such as pH, organic matter content, and radionuclide chemical speciation. Correlations between main soil properties and radionuclide Kd are examined to complete the information derived from the best estimates with a rough prediction of Kd based on soil parameters. Although there are still gaps for many radionuclides, new data from recent studies improve the calculation of Kd best estimates for a number of radionuclides, such as selenium, antimony, and iodine.  相似文献   
85.
A soil sampling intercomparison exercise for the ALMERA network   总被引:1,自引:0,他引:1  
Soil sampling and analysis for radionuclides after an accidental or routine release is a key factor for the dose calculation to members of the public, and for the establishment of possible countermeasures. The IAEA organized for selected laboratories of the ALMERA (Analytical Laboratories for the Measurement of Environmental Radioactivity) network a Soil Sampling Intercomparison Exercise (IAEA/SIE/01) with the objective of comparing soil sampling procedures used by different laboratories. The ALMERA network is a world-wide network of analytical laboratories located in IAEA member states capable of providing reliable and timely analysis of environmental samples in the event of an accidental or intentional release of radioactivity. Ten ALMERA laboratories were selected to participate in the sampling exercise. The soil sampling intercomparison exercise took place in November 2005 in an agricultural area qualified as a “reference site”, aimed at assessing the uncertainties associated with soil sampling in agricultural, semi-natural, urban and contaminated environments and suitable for performing sampling intercomparison. In this paper, the laboratories sampling performance were evaluated.  相似文献   
86.
87.
The understanding and evaluation of the possible interactions of various naturally occurring radionuclides in the world's third largest man-made dam, Nagarjuna Sagar located in Andhra Pradesh, India and built on river Krishna assumed significance with the finding of uranium deposits in locations near the dam. For the present work, surface soil samples from the mineralized area of Lambapur, Mallapuram, Peddagattu and sediment core samples from the Nagarjuna Sagar dam were analyzed for naturally occurring radionuclides namely uranium and thorium using gamma spectrometric technique. Also toxic elements lead and chromium were analysed by the Energy Dispersive X-ray Fluorescence Spectrometer (EDXRF) technique. Surface soil samples show a variation from 25 to 291 Bq/kg (2.02–23.5 mg/kg) for 238U and 32–311 Bq/kg (7.9–76.9 mg/kg) for 232Th. U/Th concentration ratio in surface soil samples ranged from 0.19 to 0.31 and was found comparable with the nation wise average of 0.26. The study of sediment core samples reflected higher U/Th concentration ratio of 0.30–0.33 in the bottom section of the core as compared to 0.22–0.25 in the upper section. The concentration ratio in the upper section of the core was similar to the ratio 0.23 found in the western Deccan Basalt region through which the river originates. A higher concentration of lead and chromium was observed in the upper section of the core compared to bottom section indicating the impact of river input on the geochemical character of dam sediment.  相似文献   
88.
农药的大量使用污染了大气、水体及生态系统。有机农药以直接施用、拌种、喷撒、随降水落入等方式进入土壤。农药在土壤中会以吸附、扩散稀释和降解等几种方式发生转化,并改变土壤结构、对土壤中生物的生存及酶的活性产生影响。生物修复技术可以通过动植物、微生物及根际环境对农药污染的降解来治理土壤中的农药,是治理农药污染的一种推荐方法。  相似文献   
89.
Abstract: The Soil and Water Assessment Tool (SWAT) model was evaluated for estimation of continuous daily flow based on limited flow measurements in the Upper Oyster Creek (UOC) watershed. SWAT was calibrated against limited measured flow data and then validated. The Nash‐Sutcliffe model Efficiency (NSE) and mean relative error values of daily flow estimations were 0.66 and 15% for calibration, and 0.56 and 4% for validation, respectively. Also, further evaluation of the model’s estimation of flow at multiple locations was conducted with parametric paired t‐test and nonparametric sign test at a 95% confidence level. Among the five main stem stations, four stations were statistically shown to have good agreement between predicted and measured flows. SWAT underestimated the flow of the fifth main stem station possibly because of the existence of complex flood control measures near to the station. SWAT estimated the daily flow at one tributary station well, but with relatively large errors for the other two tributaries. The spatial pattern of predicted flows matched the measured ones well. Overall, it was concluded from the graphical comparisons and statistical analyses of the model results that SWAT was capable of reproducing continuous daily flows based on limited flow data as is the case in the UOC watershed.  相似文献   
90.
Chlordecone was applied between 1972 and 1993 in banana fields of the French West Indies. This resulted in long-term pollution of soils and contamination of waters, aquatic biota, and crops. To assess pollution level and duration according to soil type, WISORCH, a leaching model based on first-order desorption kinetics, was developed and run. Its input parameters are soil organic carbon content (SOC) and SOC/water partitioning coefficient (Koc). It accounts for current chlordecone soil contents and drainage water concentrations. The model was valid for andosol, which indicates that neither physico-chemical nor microbial degradation occurred. Dilution by previous deep tillages makes soil scrapping unrealistic. Lixiviation appeared the main way to reduce pollution. Besides the SOC and rainfall increases, Koc increased from nitisol to ferralsol and then andosol while lixiviation efficiency decreased. Consequently, pollution is bound to last for several decades for nitisol, centuries for ferralsol, and half a millennium for andosol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号